MENU

Saturday, July 13, 2013

Los doce mitos matemáticos "en arroz y habichuelas" (II)

Continuación de ésta entrada:

Mito #2: La matemática requiere lógica, NO intuición.

Para poder explicar la falsedad del enunciado, tenemos que conocer ambos términos.
  • La lógica es la ciencia del razonamiento correcto, donde debes comprobar que una línea de razonamiento, derivada de un conjunto de enunciados llamados premisas, y su conclusión sean válidas; sea mediante la inducción o la deducción. Ambas líneas de pensamiento se estudian a nivel escolar, especialmente en las clases de geometría.
  • La intuición es un conocimiento claro, directo, inmediato y evidente, donde se llega a la veracidad sin necesidad de la razón. Esencialmente, es lo primero que te sale de la mente.
La precondición mental de la gente es que la matemática es meramente un proceso racional, y que para todos casos tiene que seguir unos pasos racionales. No nos percatamos que la intuición, cusado por la emoción del momento, la utilizamos a diario. Más aún, no nos hemos fijado que la intuición es el empujón necesario en las matemáticas para comenzar una línea de razonamiento.

Bajo el manto de las matemáticas, la intuición es una destreza que se adquiere tras años de estudio.  
Ejemplo: cuando estamos en la escuela elemental, tu ves 2 + 2 escrito en la pizarra y recitas directamente el número 4. La causa es que el maestro te enseñó que 2 + 2 = 4 es una verdad; por tanto, intuyes esa conclusión.
Al final, dependiendo del conocimiento adquirido, la mayoría de tus primeras ideas hacia un problema verbal muchas veces resultarán en una respuesta correcta.

Mito #3: La matemática no es creativa

Supongamos que en la clase de español te asignen un ensayo argumentativo. Entonces, ¿qué sucede en el proceso para crear esa obra escrita?
  1. Trabajas intensamente en hacer el borrador con tus argumentos. Como sabes que la mente se gasta,  descansas y la despejas un rato para más tarde continuar.
  2. Cuando haces la revisión, habrán ocasiones donde hallaras descubrimientos que enriquecerán tu ensayo y otras veces verás que tu línea de argumento está incorrecta, la cual puede frustrarte en miles de reescritos y horas perdidas... 
  3. ...pero, al final, celebrarás ante el descubrimiento de ese dato que arma todo el rompecabeza, dándolo por demostrado y concluido.
Ahora cambie la palabra ensayo argumentativo por teorema matemático. El proceso que han tenido que hacer grandes matemáticos como Descartes, Leibniz, Gauss, Euler, Pascal, Fermat y Wiles es uno igual al de un ensayo. Como el ensayo argumentativo es un acto de creatividad, y el proceso creativo detrás de los teoremas matemáticos es igual al de los ensayos argumentativos; entonces los teoremas matemáticos son actos de creatividad. Por tanto, la matemática es creativa.

Si las matemáticas no fuesen creativas, no tendríamos teoremas para demostrar, fórmulas para aplicar, ni los mismos símbolos modernos para sumar y restar. Siempre vemos la parte fría y calculadora, pero nunca nos percatamos que la matemática tiene un aspecto humano. Dicho aspecto, converge a un ente creativo imaginativo, intelectual, intuitivo y estético sobre lo correcto de las cosas.

Como ilustra el libro Math Over Mind: "La creatividad es central en las matemáticas como lo es en el arte, la literatura y la música.". La matemática está entre medio de las ciencias y las humanidades haciéndola idónea para utilizar piezas de cada disciplina existente para sus aplicaciones o recreaciones.  Es más, en éste blog podrás ver varias demostraciones de creatividad matemática, como las pequeñas aportaciones que le hice a la multiplicación acortada o los diferentes fondos de pantalla. Tenemos que abrir la ventana creativa de la matemática para que ésta pueda volar libremente y no se quede encerrada en un mundo en tono lógico grisáceo.

No comments: