MENU

Wednesday, July 17, 2013

Los doce mitos matemáticos "en arroz y habichuelas" (III)

Continuación de ésta entrada:

Las próximas tres falacias se centran en cómo las personas ven que la resolución de problemas matemáticos. Algunos piensan que la meta prmordial es simplemente llegar a una cantidad, cueste lo que cueste. Muchos machacan todos los valores numéricos que vean con dos o tres operaciones y rezan para que el resultado sea uno exacto.

Mito #4: Siempre tienes que saber como obtuviste tu respuesta

No es SIEMPRE, sino A VECES. El énfasis en un ejercicio matemático no debe ser la solución en específico, sino en entender el proceso general que te lleva a ésta. Algunas veces tendrás que demostrarlo, escrito en el papel, otras veces se queda en tu coco. Un poco más allá: existen teoremas matemáticos, cuyos autores ni saben como confeccionaron esa respuesta, como los famosos problemas del millón de dólares, donde no hay demostración, solo la mera conclusión.

Mito #5: Existe una mejor manera de resolver un problema matemático.

El mejor método para encontrar la solución yace individualmente. Cada alumno entiende de una manera diferente los tópicos. Por tanto, cada uno tiene su método para obtener la solución de un problema matemático. Vea el siguiente ejercicio:

Hay miles de formas de resolver el problema verbal que ve arriba, pero es importante el poder separar los datos que llegan a la solución:
Datos vitales:
  • 2012 es un año bisiesto (366 días) 
  • El observatorio cerró 11 días del 2012.. Por tanto, solamente taboró 355 días.
  • El promedio de visitantes por día laborable era de 178. 
  • Entonces el problema me pide que halle 178 × (366 - 11) = 178 × 355, una multiplicación

Luego, cada parsona escoje el método de su predilección:




Tres diversos caminos que llegan al mismo final: el Observatorio de Arecibo fue visitado por 63190 personas.

Mito #6: Siempre es importante conseguir la respuesta exacta.

No todos los problemas matemáticos piden por una respuesta exacta. En ocasiones las instrucciones mencionan la palabra "estimar" u ofrecen preguntas cuyas alternativas son aproximados de la respuesta exacta. Ésta sería basada en un cálculo aproximado de los números e/o incógnitas del problema verbal.

Cuando usted frecuenta a una tienda por departamento o supermercado aquí en la isla, con calculadora en mano, ¿usted suma los precios como aparecen en las etiquetas o una cantidad redondeada? Es más fácil totalizar cantidades redondeadas al dólar próximo, ya que sabremos con certeza que nos va a sobrar cambio. Y si hay duda, le añadimos el impuesto de venta..

El dominar los problemas verbales requiere tiempo, paciencia y práctica. Con el tiempo, podrás leer entre líneas y poder sacar el proceso necesario y utilizar el método de tu predilección para llegar a la solución.

No comments: