MENU

Sunday, June 20, 2010

Relojes para matemáticos

Esta entrada es mi tercera aportación al Carnaval de Matemáticas V, concepto que sigue la idea de Tito Eliatron Dixit, auspiciado por el blog Ciencia de Byron David.
---------------------------------
Hace unos años atrás (enero 2008) estaba en mi clase de Teoría de Números, cuya técnica de enseñanza se basaba en los estudiantes practicar sus destrezas como maestros (especialmente a aquellos que eran de Educ. Matemática) dando una clase sobre un tema escogido de una lista. Pues estábamos en la sección de introducir congruencias, cuando la compañera de clase utilizó un reloj para demostrar el tema.

Sabemos que el reloj se compone de un círculo segmentado en doce partes, pero además el grupo contenido es un grupo modulo 12, lo único que en vez de escribir cero, se escribe el 12 (a menos que utilices hora militar en donde el modulo es 24). De ahí podemos empezar a poder sumar y restar dentro de "Z sub 12": 9+6 sería igual a 3, 4-5 es equivalente a 11, y así se le pueden mostrar a los universitarios para poder luego darles congruencias más avanzadas que incluyen números elevados exponencialmente y variables.

Otro reloj que he visto desde hace tiempo ha sido el Fortis IQ, que segón lo expuesto en Gizmodo sale en $1050. En mi opinion ese reloj, bonito y todo no vale el dinero que se le quiere adjudicar debido a que la matemática utilizada es muy básica, lo más alto siendo rotaciones de pi/2, y no creo que sea para "nerdos" matemáticos, sino para casuales. Si me encomendaran a hacer un verdadero reloj para matemáticos sería algo así:




cero: cero maya
uno: versión positiva del exponente utilizado en la identidad de Euler
dos: segunda derivada de x^2
tres: tri-ángulo rectángulo (como homenaje a los 90 grados)
cuatro: separándolo de la ecuación π/4 = sumatoria, de uno a infinito, de 1/(2n-1),
cinco: definición del quinto número Fibonnacci con el número aúreo
seis: factorial de tres
siete: tercer primo de Mersenne
ocho: representación gráfica del número
nueve: romano
diez: hexadecimal
once: equivalencia

Conmigo no hay problema que Fortis o cualquier otra compañia utilice mi idea para hacer un reloj...ah, y vean más wallpapers, que puse unos nuevos.

No comments: